Bayesian approach for limited-aperture inverse acoustic scattering with total variation prior

نویسندگان

چکیده

In this work, we apply the Bayesian approach for acoustic scattering problem to reconstruct shape of a sound-soft obstacle using limited-aperture far-field measure data. A novel total variation prior scheme is developed parameterization. It imposed on Fourier coefficients parameterization not itself. Using prior, some less smooth objects can be reconstructed. We also investigate well-posedness in sense Hellinger distance, Wasserstein distance and Kullback–Leibler divergence. Extensive numerical tests are provided illustrate performance.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Logarithmic Laplacian Prior Based Bayesian Inverse Synthetic Aperture Radar Imaging

This paper presents a novel Inverse Synthetic Aperture Radar Imaging (ISAR) algorithm based on a new sparse prior, known as the logarithmic Laplacian prior. The newly proposed logarithmic Laplacian prior has a narrower main lobe with higher tail values than the Laplacian prior, which helps to achieve performance improvement on sparse representation. The logarithmic Laplacian prior is used for I...

متن کامل

Prior Model Selection for Bayesian Inverse Electrocardiography

The goal of the inverse problem of electrocardiography (ECG) is to reconstruct cardiac electrical sources using body surface potential measurements, and an appropriate mathematical model representing the thorax [1,2]. However, due to attenuation and smoothing that occurs in the thorax, the problem is ill-posed and reliable solutions require regularization. The application of suitable regulariza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis

سال: 2022

ISSN: ['1026-7360', '1563-504X', '0003-6811']

DOI: https://doi.org/10.1080/00036811.2022.2116014